Заземление в частном доме своими руками: 2 схемы для разных грунтов по науке

Соблюдение правил электрической безопасности защищает здоровье жильцов и сохраняет в исправность бытовых приборов при авариях в системе энергоснабжения.

Сейчас очень много статей и видеороликов о том, как можно сделать заземление в частном доме своими руками. Средства интернет позволяют людям высказывать свое мнение, зачастую довольно ошибочное.

В этой статье я показываю 2 варианта схем разных конструкций, основанных на научных рекомендациях со ссылками на нормативные документы.

Какие электрические характеристики обеспечивают безопасную работу контура заземления

Защитная функция контура основана на том явлении, что аварийный ток стекает по пути наименьшего сопротивления.

На корпусе любого бытового прибора из-за повреждения изоляции может появиться потенциал фазы. В старой системе заземления TN-C он станет стекать через тело прикоснувшегося человека.

Система заземления TN-C

Тяжесть электротравмы зависит от многих факторов, но может привести и к фатальным последствиям.

В схеме электропитания TN-S искусственно созданный РЕ проводник через контур заземления отводит опасный потенциал, защищает человека от поражения током.

Система заземления TN-S

Для оптимальной работы схемы необходимо учесть:

  • сопротивление растеканию;
  • напряжения прикосновения и шага;
  • состояние грунта по его удельному сопротивлению;
  • электрические характеристики выбранных материалов и их стойкость к воздействию агрессивной среды почвы;
  • конструкцию контура, которая должна быть просчитана по нормативам и проверена электрическими замерами высокоточными приборами.

Сопротивление заземляющего устройства в электроустановках до 1000 В: из каких составляющих оно складывается

Любой контур заземления состоит из вертикальных или горизонтальных заземлителей (электродов), расположенных в земле. Через создаваемый ими контакт протекает аварийный ток.

Схема контура заземления

Вертикальные электроды заглублены в почву, разнесены на определенное расстояние, объединены горизонтальным заземлителем, подключенным к главной шине здания.

Для частного дома редко используется один вертикальный заземлитель по причине противодействия сопротивления растеканию тока.

Допустим, что имеется сооружение с подключенным к нему одним вертикальным электродом, расположенным в почве. На главную шину организовано металлическое короткое замыкание. Сопротивлением заземляющего проводника пренебрегаем для упрощения.

Сопротивление заземляющего устройства

Ток короткого замыкания начинает стекать на потенциал земли по электроду и распределяется с него равномерно по всем направлениям. При этом максимальная плотность тока будет создана у самого заземлителя, а с удалением от него она станет уменьшаться.

Прохождение тока через постоянно увеличивающуюся поверхность земли ослабляет его величину. Напряжение тоже имеет самую большое значение у электрода, а с постоянным снижением величины тока оно падает. Здесь проявляет свое действие простой закон Ома.

На границе определенной площади, называемой зоной растекания, напряжение уменьшается практически до нуля от своего максимального значения. Таким способом мы получили точки нулевого потенциала, находящиеся с противоположных сторон электрода, на которых U=0.

Сопротивление заземляющего устройства Rз — это сопротивление участка земли между точками нулевого потенциала. Оно вычисляется по формуле Rз=Uф/Iкз.

На его величину очень слабо влияет сопротивление металлических частей заземлителей с шиной и контакты электродов с землей — они очень маленькие. Вопрос его снижения решается за счет изменения конструкции контура и характеристик грунта.

Улучшить этот показатель можно установкой дополнительного электрода. Однако монтировать его следует определенным образом.

Если два электрода разместить рядом, то площадь зоны растекания практически не меняется. Ток короткого замыкания стекает на том же участке грунта. Поэтому заземлители необходимо разнести на большее расстояние.

При этом ток КЗ станет стекать с каждого электрода, разделяясь на два потока, а между ними образуется пространство, где они оказывают влияние друг на друга. Оно называется зоной экранирования. Для оценки его характеристик введены поправочные коэффициенты.

Вертикальные электроды

Второй способ улучшения сопротивления заземляющего устройства основан на увеличении длины вертикального электрода и его заглублении в грунт до 30 метров. Технология этого метода приведена в конце статьи.

Несколько вертикальных электродов привариваются в почве к металлической полосе (горизонтальному заземлителю). Он тоже оказывает влияние на стекание аварийного тока, оценивается по индивидуальному коэффициенту.

Его величина зависит от количества электродов в контуре и отношения расстояния между ними к их длине. Данные сведены в таблицу.

Горизонтальный электрод

Таким образом, электрические характеристики создаваемого контура сильно зависят от конфигурации и расположения вертикальных и горизонтальных заземлителей, их заглубления в грунт.

Владельцу частного дома необходимо оценивать сопротивление заземляющего устройства в электроустановках до 1000 В и делать предварительный расчет на бумаге до начала сборки конструкции. Для этого требуется представлять, из каких процессов берутся параметры, задаваемые в проекте.

Напряжение прикосновения и шага: что это такое и как оно влияет на расчет контура заземления

Напряжение прикосновения описывает пункт ПУЭ 1.7.24. Его величина заложена в формулы для расчета сопротивления контура заземления.

Представим, что на корпусе какого-то оборудования появился фазный потенциал U и к нему прикоснулся человек с сопротивлением тела R.

Через него начнет стекать ток Iт, который определяется по закону Ома. Величина приложенного напряжения зависит от места создания контакта, удаления от максимальной величины U, обозначается термином прикосновения (Uпр).

Напряжение прикосновения

Поскольку от Uпр зависит безопасность человека, то на него введены строгие нормативы. При создании электрического проекта на объект в него закладывают жесткие ограничения, влияющие на безопасность. Они учтены в допустимых параметрах сопротивления заземляющего устройства.

Напряжение шага

Еще один ряд факторов, влияющий на расчет контура — учет тех процессов, которые протекают непосредственно на грунте при стекании аварийного тока, распределяющегося внутри той зоны, где может случайно оказаться человек. Их учитывает напряжение шага.

В эпицентре разряда приложено максимальное напряжение, а его величина постепенно снижается с увеличением расстояния до нуля. Когда в этой зоне будет двигаться человек, то между его ногами возникнет разность потенциалов.

Она возрастает при приближении к месту разряда, а при определенных условиях может привести к электротравме: чем ближе к центру, тем опаснее.

Напряжение шага

Термин напряжения шага Uш заложен в пункт ПУЭ 1.7.25. Он строго нормируется формулами расчета проекта заземляющих устройств.

На промышленных объектах обычно применяются дорогие специальные защиты, быстро отключающие аварийные режимы, когда напряжению шага остается возможность проявить себя очень короткое время.

В частном доме таких устройств нет. Поэтому к качеству контура предъявляются повышенные требования. Владельцу необходимо продумать место его расположения и трассу прохождения горизонтального заземлителя.

Напряжение прикосновения и шага стремятся сделать настолько минимальными, насколько они могут обеспечить повышенную безопасность человека. Они учитываются нормативами ПУЭ.

Какие нормы по сопротивлению растекания заложены в ПУЭ и почему

Для создания надежного контура частного дома следует понимать, что он работает не сам по себе, а в составе всей системы заземления электроустановки, начиная от промышленной трансформаторной подстанции.

Безопасность зависит от типа нейтрали ТП и быстроты ликвидации аварийных ситуаций.

На промышленных объектах, требующих оперативного отключения аварий, создается эффективно заземленная нейтраль, позволяющая при однофазных замыканиях на землю быстро отключать токи КЗ. Для этого ее сопротивление, с учетом влияния всех естественных и искусственных заземлителей, не должно превышать 0,5 Ома. (Пункт 1.7.90.)

Бытовая электрическая сеть 380/220 вольт обычно создается с глухозаземленной нейтралью. Ее безопасность в какой-то части может улучшить разделительный трансформатор.

Сеть с изолированной нейтралью

За ним создается сеть с изолированной нейтралью. Но мы сейчас рассматриваем другой вопрос.

Трансформаторная подстанция, подключенная по обычной схеме с заземленной нейтралью, должна работать в режиме, предусмотренном пунктом ПУЭ 1.7.101.

Глухозаземленная нейтраль

Это значит, что при питании частного дома напряжением 380/220 вольт общее сопротивление всей цепочки заземляющих устройств должно укладываться в норматив менее 4 Ома. На эту величину оказывают влияние все повторные заземлители ВЛ и естественные заземления.

К последним относят железобетонные фундаменты зданий и другие, закопанные в грунт металлические конструкции. Их задача — длительно обеспечивать электрический контакт с землей.

Повторные заземлители линии распределяются по опорам ВЛ для обеспечения достаточной величины тока однофазного замыкания, которую должна почувствовать токовая защита. Они же ставятся на вводе в здание.

Все эти заземления должны в комплексе обеспечить величину сопротивления 0,4 Ома на трансформаторной подстанции.

Когда ВЛ и ТП введены в эксплуатацию, то любое смонтированное на них заземление находится в работе. Измерить отдельно его сопротивление невозможно и очень опасно: оно является частью электрической цепи.

Теперь продолжим рассмотрение пункта ПУЭ 1.7.107. для заземляющего устройства частного дома. Здесь уже приводятся другие нормативы.

Сопротивление заземления

Для создаваемого нами заземлителя введена величина 30 Ом. Контур заземления можно отключить от ГЗШ и замерить его сопротивление. Понимаем, что в работе оно участвует со всеми повторными и естественными заземлителями схемы и обеспечивает 4 Ома для трансформатора на КТП.

Но не все так просто. Нам потребуется выполнить еще одно условие безопасности: сопротивление ближайшего повторного заземлителя должно составить 10 Ом. Об этом говорит пункт ПУЭ 1.7.103.

Сопротивление заземлителей

Однако обеспечить эти 10 и 30 Ом простыми способами не всегда возможно из-за физического состояния грунта.

Виды грунтов и их удельное сопротивление: что требует обязательного учета

Наш контур будет забит в землю, которая служит проводником электрического тока. Ее проводимость зависит от многих факторов и нормируется величиной удельного сопротивления.

Например, скальный грунт имеет очень плохие характеристики. Работать на нем — плохая затея. Нормируемые параметры и возможные пределы их отклонения помещены в таблицу.

Удельное сопротивление грунта

Сведения эти представлены как ориентировочные для проведения приблизительного расчета. При создании проекта контура их желательно уточнить на конкретной местности.

Чем влажнее почва и больше в ее состав входит различных солей, тем лучше ее удельное сопротивление. Однако солевые растворы — это агрессивная среда, вызывающая коррозию металлов.

Именно постоянные колебания влаги, зависящие от времени года и погодных условий, вызывают большие отклонения удельного сопротивления от средней величины.

В мороз вода превращается в лед, а он довольно плохо проводит электрический ток. Во время жары почва высыхает. Зима и лето — самые неблагоприятные периоды для работы контура заземления.

Поэтому эти времена года используются для проведения контрольных замеров сопротивлений растекания.

Грунт не обладает однородной структурой. При заглублении в почву могут встретиться всякие сюрпризы. Предвидеть их нереально. Особенно при большой глубине.

Например, сверху почвы может быть слой чернозема, а под ним суглинок или супесок, камни.

Приблизительно оценить состав грунта можно самостоятельно. Для этого берут с глубины порядка метра его кусочек и пытаются скатать «колбаску» между ладонями. Если ее толщина соответствует спичке, то это глина.

Из песка скатать ничего не получится, он рассыпается. Из суглинка можно сделать колбаски толщиной порядка сантиметра. Супесок скатывается чуть большими кусочками и сразу разваливается.

Метод приблизительный, но он позволяет получить данные для расчета проекта. Более точно эти результаты обеспечивают приборы, предназначенные для измерения электрического сопротивления грунтов. Ими занимаются специалисты электролабораторий.

Поскольку удельное сопротивление грунта сильно зависит от сезона, то для более точного расчета контура введены сезонные коэффициенты, учитывающие еще и четыре района проживания.

Сезонные коэффициенты

Требования к материалам для контура заземления, которые надо знать обязательно

Качественный электрический контакт между металлом электродов и почвой создается не за счет закапывания конструкции, а при забивании стержней в землю, когда грунт уплотняется при вдавливании.

Электроды должны хорошо выдерживать ударные механические нагрузки при монтаже схемы, входить в грунт без деформации и сохранять свои электрические характеристики десятилетиями в условиях действия на них агрессивной почвенной среды.

К выбору заземлителей предъявляются строгие нормативы по виду металлов и их габаритов. Предельно допустимые минимальные размеры электродов опубликованы таблицей ПУЭ.

Таблица ПУЭ

Уменьшать сечение материалов нельзя, а выбирать толще не рационально.

Для вертикальных заземлителей обычно используется труба, пруток и уголок, а горизонтальных — та же полоса или пруток. Их поперечное сечение должно соответствовать требованиям таблицы 1.7.104.

Конструкция контура предназначена для создания электрического контакта с грунтом даже при коррозии металла. Защищать его красками нельзя.

Окончательная сборка электродов осуществляется сваркой, а ее
шов довольно быстро ржавеет и разрушается. Поэтому его надо покрывать защитным
слоем битумного лака.

Металл соединительной полосы, расположенный на открытом воздухе, к которому подключают отвод на главную защитную шину, тоже нужно покрасить.

Как рассчитать контур заземления: пошаговая инструкция

Проект создается в несколько этапов.

Шаг №1. Выбор материала

Металл и его профиль выбирают по вышеприведенной таблице 1.7.104. При изготовлении используют те материалы, которые имеются в наличии или проще всего приобрести в конкретной местности. Главное условие — соблюсти требуемое сечение.

Шаг №2. Определение конструкции

Здесь задаемся:

  • глубиной забивки вертикальных заземлителей H;
  • расстоянием между ними D;
  • их количеством N.
Размеры контура заземления

Расчет предполагает их расположение в линию, а не треугольником, когда увеличивается зона экранирования. Но при необходимости этот вариант можно легко пересчитать.

Направление линии выбирается с учетом местных условий так, чтобы она не пересекалась с другим магистралями, например, канализацией, водопроводом, подводом газа.

Глубину забивки определяют опытным путем на одном контрольном экземпляре. Для него выкапывают ямку глубиной 0,7 метра и в нее загоняют пробный стержень.

При этом оценивают затрачиваемое усилие и особенности технологии. Если залить в ямку ведро воды и дать ее впитаться в грунт хотя бы полчаса, то забивка потребует меньших физических усилий.

Рекомендуемая длина для опытного образца обычно составляет 2-2,5 метра. Короче стержни делают только для очень плотных почв.

Расстояние между вертикальными электродами выбирают кратно их длине: это позволяет лучше учитывать коэффициенты взаимного влияния.

Количество вертикальных заземлителей определяет длину соединительной полосы с учетом участка подвода к дому, а ее характеристики тоже закладывают при расчете конструкции.

Когда конфигурация и размеры выбраны, то приступают к следующему этапу.

Шаг №3. Расчет электрического сопротивления выбранного контура

Вычисления по математическим формулам позволяют предварительно оценить собираемую конструкцию. Если она укладывается в норматив, то можно приступать к ее изготовлению. В противном случае вносятся коррективы схемы увеличением числа электродов, их заглублением или повышением расстояний.

Вначале считают сопротивление одиночных заземлителей с учетом их формы и способа заглубления.

Сопротивление одиночных заземлителей

Когда расчет выполнен и проверен, то приступают к определению специальных коэффициентов использования. Они учитывают степень экранирования и взаимного влияния электродов.

Привожу их наиболее распространенную часть таблицей.

Коэффициенты использования

После определения коэффициентов влияния можно приступать к общему расчету сопротивления заземляющего устройства. Привожу формулу.

Расчет заземляющего устройства

Полученный результат может уложиться в нормируемые 30 Ом или быть выше. Если он не удовлетворяет требованиям ПУЭ, то потребуется что-то добавить в конструкцию или изменить размеры. После этого необходимо сделать новый расчет и добиться положительного результата.

Вычисления можно вести вручную по формулам на бумаге или воспользоваться онлайн калькулятором, приложенным ниже.

Верхний слой грунта
Климатический коэффициент
Нижний слой грунта
Количество верт. заземлителей
Глубина верхнего слоя грунта, H (м)
Длина вертикального заземлителя, L1 (м)
Глубина горизонтального заземлителя, h2 (м)
Длина соединительной полосы, L3 (м)
Диаметр вертикального заземлителя, D (м)
Ширина полки горизонтального заземлителя, b (м)
Удельное электрическое сопротивление грунта
Сопротивление одиночного верт. заземлителя
Длина горизонтального заземлителя
Сопротивление горизонтального заземлителя:
Общее сопротивление растеканию электрического тока

Просчитав несколько вариантов исполнения заземлительной конструкции, вы хорошо запомните ее особенности, поймете технологию сборки. А это поможет избежать ошибок и создать надежное устройство для длительной эксплуатации.

2 схемы изготовления контура заземления в частном доме

Приступать к практическим работам на грунте можно только после того, как теоретический расчет собираемой схемы полностью уложился в требования безопасности, заложенные в ПУЭ.

Типовой контур для обычных грунтов из подручных средств

Для сборки заземлительного устройства потребуется:

Размеры траншеи
  1. Прокопать канаву под горизонтальный электрод на глубину порядка 0,8 метра. Ее ширина в местах забивки вертикальных штырей должна обеспечить удобство работы сварочными электродами.
  2. Забить в грунт вертикальные штыри на всю глубину, оставив на поверхности только десяток сантиметров для монтажа горизонтальной полосы.
Загнутый уголок

Чтобы не разбивать верхушку электрода кувалдой его сразу защищают предохранительным колпаком. Можно заранее приварить пластину или кусок уголка, предотвращающий деформации.

Сварка заземления
  • Сварить по длине горизонтальный заземлитель и приварить его к вертикальным электродам. Сварные швы должны проходить по всему периметру стыкуемых поверхностей.
Вывод заземления
  • Вывести полосу на цоколь здания, закрепить, приварить к ней болт 10 мм для крепления заземляющего проводника, через который будет создаваться электрическая связь с главной шиной заземления.
Заземляющий проводник
  • Подключить заземляющий проводник болтовому соединению.

ПУЭ определяет нормативы на использование защитного проводника из:

  • стали с поперечным сечением 75 мм кв (очень проблемно подключать к ГЗШ вводного щита);
  • алюминиевого провода 16 кв мм (требует периодического поджатия при эксплуатации из-за высокой текучести металла);
  • меди сечением 10 квадрат. Это самый приемлемый вариант монтажа к контуру и ГЗШ.

Промышленные модульные заземлители быстрого монтажа

Специальные заводские комплекты значительно облегчают сборку и монтаж контура, но их стоимость может разочаровать.

Комплект заземления

Здесь обычно используется один вертикальный стальной электрод с омедненным покрытием сборной конструкции за счет промежуточных резьбовых переходников.

Длина одного элемента составляет 1,5 метра. Последовательное соединение четырех звеньев позволяет углубиться на 6 м. Можно забивать в землю и дальше, вплоть до 30 метров.

Но здесь махать кувалдой очень затруднительно. Такую работу выполняют мощным перфоратором.

Работа перфоратором

На верхний штырь забитого электрода монтируется через специальный обжимной переходник под заземляющий проводник.

Монтаж заземляющего проводника

Место контакта защищается битумной лентой. В таком виде оно может быть скрыто в почве.

Защита заземления

Однако для проведения профилактических осмотров его лучше делать чуть выше грунта и помещать в защитный короб.

Пример того, как сделать заземление в частном доме своими руками по этому методу объясняет своим видеороликом владелец Energosystems.

Заключительный совет

Окончанием работы следует считать не завершение монтажа и подключение заземлительного проводника к ГЗШ вводного щитка, а электрические проверки собранной схемы.

Они заключаются в замере электрического сопротивления специальными приборами. Это работа электротехнической лаборатории.

Замер сопротивления контура заземления

Она оценит сопротивление собранного заземлительного устройства и ближайшего повторного заземлителя. Если они укладываются в норму, то вопрос закрыт. Вы получите заверенный протокол проверки.

На практике встречаются случаи, когда теоретический расчет не оправдывает ожидания, а реальная норма завышена. К этому надо быть готовым.

Выход из этой ситуации прост: траншею в районе концевого электрода оставляют открытой и прокапывают ее дальше для вбивания дополнительного вертикального заземлителя.

Его подключают сваркой через соединительную полосу к основному контуру. Затем выполняют повторный замер сопротивления.

Свои работы лаборатория выполняет за деньги. Они позволяют оценить реальное состояние контура, а не полагаться на волю случая.

Выражаю благодарность владельцу видео Алекс Жук за его канал «Лекции по электротехнике». Предлагаю оценить его работу «Зачем нужен контур заземления».

Жду ваших вопросов в комментариях.

Рейтинг статьи

Просмотров страницы: 2144

Оставить комментарий

avatar
  Подписаться  
Уведомление о